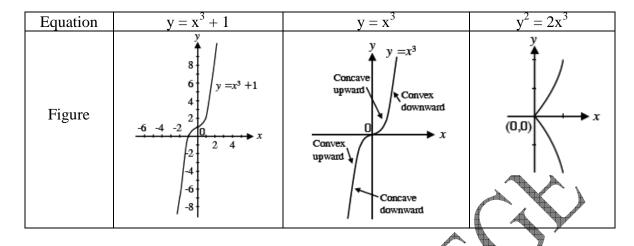
SECTION A

- 1. The equation of the line parallel to $\frac{x-3}{1} = \frac{y+3}{5} = \frac{2z-5}{3}$ and passing through the point (1,3,5) in vector form is.....
- 2. The point of intersection of the lines $\vec{r} = (-\vec{i} + 2\vec{j} + 3\vec{k}) + t(-2\vec{i} + \vec{j} + \vec{k})$ and $\vec{r} = (2\vec{i} + 3\vec{j} + 5\vec{k}) + s(\vec{i} + 2\vec{j} + 3\vec{k})$ is......
- 3. The centre and radius of the sphere given by $x^2 + y^2 + z^2 6x + 8y 10z + 1 = 0$ is.....
- 4. If $\vec{u} = \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$, then....
- If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ then the angle between $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$ is
- 6. The vectors $2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$ and $a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$ are perpendicular when 3...
- The area of the parallelogram having a diagonal $3\vec{i} + \vec{j} \hat{\vec{k}}$ and a side $\vec{i} 3\vec{j} + 4\vec{k}$ is
- 8 If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$ then
- o If \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{p} + \overrightarrow{q} are vectors of magnitude λ then the magnitude of $|\overrightarrow{p} \overrightarrow{q}|$ is
- 10 If $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{x} \times \overrightarrow{y}$ then
- 11. If $\overrightarrow{PR} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{QS} = -\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ then the area of the quadrilateral PQRS is
- 12 The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of
- parallelogram *OPRQ*. Then |POQ| is |POQ| = |POQ| = |POQ| is |POQ| = |POthe angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ is
- 14. If $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$ for non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} then
- 15. If a line makes 45° , 60° with positive direction of axes x and y then the angle it makes with the z axis is
- 16. If $[\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}] = 64$ then $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]$ is
- 17. If $\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 8$ then $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$ is
- 18 The value of $[\overrightarrow{i} + \overrightarrow{j}, \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{k} + \overrightarrow{i}]$ is equal to
- 19. The shortest distance of the point (2, 10, 1) from the plane $\overrightarrow{r} \cdot (3\overrightarrow{i} \overrightarrow{j} + 4\overrightarrow{k}) = 2\sqrt{26}$ is
- 20. The vector $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d})$ is
- 21. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are a right handed triad of mutually perpendicular vectors of magnitude a, b, c then the value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is

22. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar and

$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} \text{ then } \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix} \text{ is } \dots$$


- 23. $\overrightarrow{r} = s \overrightarrow{i} + t \overrightarrow{j}$ is the equation of
- 24. If the magnitude of moment about the point $\overrightarrow{j} + \overrightarrow{k}$ of a force $\overrightarrow{i} + a\overrightarrow{j} \overrightarrow{k}$ acting through the point $\overrightarrow{i} + \overrightarrow{j}$ is $\sqrt{8}$ then the value of a_{18}
- 25. The equation of the plane passing through the point (2, 1, -1) and the line of intersection of the planes \overrightarrow{r} . $(\overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}) = 0$ and \overrightarrow{r} . $(\overrightarrow{j} + 2\overrightarrow{k}) = 0$ is ...
- 26. The work done by the force $\overrightarrow{F} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ acting on a particle, if the particle is displaced from A(3, 3, 3) to the point B(4, 4, 4) is
- 27. If $\overrightarrow{a} = \overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ then a unit vector perpendicular to \overrightarrow{a} and \overrightarrow{b} is
- The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and $\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2}$ is
- 29. The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is
- $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-3}{5} \text{ is}$ 30. The following two lines are $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z-1}{2}$
- 31. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then $(\overrightarrow{a} + \overrightarrow{b})$ is a unit vector if
- 32. If \overrightarrow{a} is a non-zero vector and m is a non-zero scalar then $m \overrightarrow{a}$ is a unit vector if
- 33. If \overrightarrow{a} and \overrightarrow{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then \overrightarrow{a} . \overrightarrow{b} is equal to
- 34. The shortest distance between the parallel lines $\frac{x-3}{4} = \frac{y-1}{2} = \frac{z-5}{-3}$ and $\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-3}{3}$ is
- 35. If $\overrightarrow{PR} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{QS} = -\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ then the area of the quadrilateral PQRS is

SECTION B

- Altitudes of a triangle are concurrent prove by vector method.
- 2. Prove that $\cos (A B) = \cos A \cos B + \sin A \sin B$
- 3. Prove that $\cos (A+B) = \cos A \cos B \sin A \sin B$
- $\Delta \quad \text{Prove that } \sin(A+B) = \sin A \cos B + \cos A \sin B$
- 5. Prove that $\sin (A B) = \sin A \cos B \cos A \sin B$.
- 6. If $\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}$, $\overrightarrow{b} = -2\overrightarrow{i} + 5\overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{j} 3\overrightarrow{k}$ Verify that $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$

- 7. Verify $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{d}] \overrightarrow{c} [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \overrightarrow{d}$ for \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} in $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{k}$, $\overrightarrow{c} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{d} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$
- 8. Show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect and hence find the point of intersection.
- 9. Show that the lines $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and find their point of intersection.
- 10. Find the vector and cartesian equations of the plane through the point (2, -1, -3) and parallel to the lines $\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-3}{-4}$ and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-2}{2}$.
- 11. Find the vector and cartesian equation of the plane through the point (1, 3, 2) and parallel to the lines $\frac{x+1}{2} = \frac{y+2}{-1} = \frac{z+3}{3}$ and $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z+2}{2}$
- 12. Find the vector and cartesian equation to the plane through the point (-1, 3, 2) and perpendicular to the planes x+2y+2z=5 and 3x+y+2z=8.
- 13. Find the vector and cartesian equations of the plane passing through the points (-1, 1, 1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5
- Find the vector and cartesian equations of the plane passing through the points (2, 2, -1), (3, 4, 2) and (7, 0, 6)
- 15. Find the vector and cartesian equation of the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{3}$ and parallel to the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z+1}{1}$.
- 16. Find the vector and cartesian equation of the plane passing through the points A(1, -2, 3) and B(-1, 2, -1) and is parallel to the line $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-1}{4}$
- 17. Find the vector and cartesian equation of the plane through the points (1, 2, 3) and (2, 3, 1) perpendicular to the plane 3x 2y + 4z 5 = 0
- 18. Find the vector and cartesian equation of the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ and passing through the point (-1, 1, -1).
- 19. Find the vector and cartesian equation of the plane passing through the points with position vectors $3\vec{i} + 4\vec{j} + 2\vec{k}$, $2\vec{i} 2\vec{j} \vec{k}$ and $7\vec{i} + \vec{k}$.
- Derive the equation of the plane in the intercept form.
- 21. Find the vector and cartesian equation to the plane through the point (-1,-2,1) and perpendicular to the planes x+2y+4z+7=0 and 2x-y+3z+3=0

Curve tracing

